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An Input Distance Function (IDF) is estimated to empirically evaluate and

analyse the technical and environmental efficiencies of 210 farms located in

the Chaudière watershed (Quebec), where water quality problems are

particularly acute because of the production of undesirable outputs

that are jointly produced with agricultural products. The true IDF is

approximated by a flexible translog functional form estimated using a full

information maximum likelihood method. Technical and environmental

efficiencies are disaggregated across farms and account for spatial

variations. Our results show that there is a significant correlation between

the two efficiencies. The IDF is used to compute the cumulative Malmquist

productivity index and the Fisher index. The two indices are used to

measure changes in technology, profitability, efficiency and productivity in

response to the adoption of two selected Best Management Practices

(BMPs) whose objective is to reduce water pollution. We found significant

differences across BMPs regarding the direction and the magnitude of

their effect.

Keywords: environmental efficiency; distance function; phosphorus

runoff; productivity; profitability; technical efficiency

JEL Classifications: Q25; Q52

I. Introduction

Typically, farmers produce good outputs such as

crops and livestock (‘goods’ henceforth), but also

undesirable outputs (‘bads’ henceforth) such as

excessive phosphorus or sediments. The analysis of

Technical Efficiency (TE) in agricultural production

has a long and rich history (e.g. Farrell, 1957), but its

linkage to Environmental Efficiency (EE) is fairly

recent (Reinhard et al., 1999; Cuesta et al., 2009).

Concerns about climate change, biodiversity and

water pollution have boosted interest in mitigating

the environmental consequences of agriculture

through Beneficial Management Practices (BMPs).

Hence, the extent by which BMPs may impact on

measured efficiencies and other aspects of economic

performance has important public policy

implications.
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Barbera and McConnell (1990)1 analyse economic
performance of firms producing good and bad
outputs by estimating a cost function. Their approach
entails disaggregating a subset of inputs into abate-
ment and nonabatement components to calculate
their effect on costs. However, this approach usually
does not consider the abatement components of other
inputs. Another approach is to introduce one or more
bad outputs along with good outputs in a multi-
product production function. Each choice of the base
unconstrained emission rate thus creates a different
nonlinear transformation of the original variables
conditioning agricultural production and hence a new
model with different elasticities, returns to scale and
test statistics. Stochastic Frontier Analysis (SFA) has
also been applied to cost functions and is most useful
when production processes are subject to random
shocks (Coelli et al., 2003).2

Fernandez, Koop and Steel (FKS, 2000, 2002),
introduced good and bad outputs in a stochastic
production frontier, estimated with Bayesian meth-
ods, to disentangle TE and EE. FKS (2002) made the
assumption that the frontier for the ‘goods’ depends
only on input quantities, whereas the frontier for the
‘bads’ is determined by the amount of good outputs
produced.

The direct estimation of a cost frontier can be
impractical or in some cases inappropriate because of
systematic deviations from cost-minimizing behav-
iour. In such cases, the duality between cost and
production functions vanishes and cost frontier
estimates are biased (Coelli et al., 2003). A solution
is the use of a shadow cost function, which explicitly
models systematic deviations. This can be a complex
exercise even when simplifying assumptions are made
to obtain a tractable model. Reinhard and Thijssen
(2000) base their analysis of EE on a system of
equations estimating shadow input costs. The authors
compute nitrogen efficiency through technical and
allocative components.3 Another solution is to obtain
a direct estimate of the primal production technology,
and then derive the implicit cost frontier. Bravo-Ureta
and Rieger (1991) use this approach and assume
that input quantities are decision variables.

As mentioned by Coelli et al. (2003), this approach is

not widely adopted because of a simultaneity bias.

Finally, based on Färe et al. (2005), Huhtala and

Marklund (2005) develop an empirical framework to

estimate the shadow prices for ‘bads’ based on the

opportunity cost of production. They assume that

abatement is only possible by adjusting agricultural

production. Atkinson and Dorfman (2005) use an

Input Distance Function (IDF) approach to charac-

terize a polluting technology. The IDF can be inter-

preted as a multi-input output-requirement function

that allows deviations from a frontier.4 Distance

function approaches allow for the computation of

measures reflecting the output and input relationships

indicative of performance. As such, they are ideally

suited to analyse efficiency at the watershed level.
In this article we estimate TE and EE as well as

indices of productivity and profitability and assess

the impact of BMPs on them. We follow Atkinson

and Dorfman (2005) in relying on an IDF with a

‘bad ’ modelled as a technology shifter to compute

our performance indicators. We also rely on an IDF

with an aggregate ‘goods’ modelled as a technology

shifter to compute our environmental performance

indicators. A constrained maximum likelihood esti-

mator is used to estimate our three-equation systems.

We found that farms that are technically inefficient

tend to be environmentally inefficient and that there

are significant differences across BMPs regarding the

direction and the magnitude of their effect on

profitability, efficiency and productivity. Our analy-

ses have focused on a limited number of BMPs and

only one bad output. Even though BMP implemen-

tation and bad output reductions are costly, BMP

adoption increases profitability for one of the BMPs

considered.
The remainder of this article is structured as

follows: the next section describes our methodolog-

ical approach while the third section discusses some

aspects of the survey from which our data originates.

The fourth section presents estimation results, per-

formance indicators and how the latter are affected

by BMPs. The last section concludes the article.

1 Färe et al. (1993) treated environmental effects of an undesirable output and an undesirable input using parametric
mathematical programming and nonparametric mathematical programming known as Data Envelopment Analysis (DEA).
The DEA approach has been used extensively in studies of SO2 emission in electric utilities and for nitrogen and phosphorus
runoff in agriculture.
2 Schmidt and Lovell (1979) described how one could estimate a Cobb–Douglas stochastic cost frontier and then use duality to
derive the implicit production frontiers. With these two frontiers, one could measure cost efficiency and technical efficiency,
and hence allocative efficiency residually.
3 The materials balance condition of the nitrogen cycle ensures that the nitrogen surplus of output-constrained dairy farms is
minimized if farm is nitrogen efficient in the inputs.
4 The Output Distance Function (ODF) identifies the largest set of outputs possible given a set of inputs while the IDF
identifies the smallest set of inputs necessary to produce a set of outputs. The ODF can thus be interpreted as a multi-output
production function allowing deviations (distance) from the frontier.
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II. Methodological Approach

Input distance function of ‘goods’ with ‘bads’ as
technological shifters

Let us define x¼ (x1, . . . , xN)2R
N
þ as a vector of

inputs and y¼ ( y1, . . . , yM)2RM
þ a vector of good

outputs. Treating the ‘bads’ as exogenous shifters of
the technology set allows us to write an IDF as
(Atkinson and Dorfam, 2005)

DIðy, x j bÞ ¼ sup
�

� : ðx=�, y j bÞ 2 Lðx, y j bÞ
� �

ð1Þ

The IDF is monotonically nondecreasing in inputs
ð@DI=@xn � 0Þ and the ‘bads’ ð@DI=@b � 0Þ5 and
monotonically nonincreasing in outputs
ð@DI=@xy � 0Þ. This specification of the distance
function enables us to compute technological effi-
ciencies and other measures of performance condi-
tioned on levels of bad outputs. Since the IDF is dual
to the cost function, we can write

Cð½y, b�, xÞ ¼ min
x

px : DI ½y, b�, xð Þ � 1
� �

ð2Þ

where p¼ ( p1, . . . , pN)2R
N
þ is the vector of input

prices and C([y, b], x]) is a cost function. Equation 2
implies that unless inputs are used at their cost-
minimizing proportions and levels, the IDF measure
will be greater than one.

Input distance function of the ‘bads’

In FKS (2002), the frontier for the ‘bads’ is condi-
tioned by the amount of ‘goods’. Consequently, the
frontier of the ‘bads’ depicts the cleanest possible
technology to produce a given bundle of ‘goods’. This
is convenient, but it might be too restrictive.6 In the
following, the ‘goods’ are treated as exogenous
shifters in the technology set of the ‘bads’.
Conditional on the level of ‘goods’, efficiency mea-
sures over the ‘bads’ and the inputs are well-defined.
Following FKS (2000), we model the production
technology of the ‘goods’ using a constant elasticity of
transformation aggregator:

G ¼
XM
m¼1

yð1þqÞ=qm

 !q=ð1þqÞ

ð3Þ

with q40. If q is zero, products cannot be substituted
while a value of infinity implies perfect substitution.
In this ‘reverse’ SFA framework, any systematic
negative deviation is interpreted as environmental
inefficiency. Treating the ‘goods’ as exogenous shifters
of the technology set allows us to define the IDF of
the ‘bads’ as

D
$ I
ðb, x j yÞ ¼ sup

�
� : ðx=�, b j yÞ 2 Lðx, b j yÞ
� �

ð4Þ

This specification allows us to estimate EE condi-
tioned on levels of good outputs.

Empirical specification and estimation

The IDF in (4) is approximated by a translog
functional form. For farms f¼ 1, . . . ,F the
technology is

0 ¼ �0 þ �� ln ��if þ
X
j

�jrjf þ
X
i

�i�hif þ
X
z

�z ln bzf

þ
X
m

�m ln ymf þ
X
n

�nxnf

þ ð1=2Þ
X
m

X
m0

�mm0 ln ymf ln ym0f

þ ð1=2Þ
X
z

X
z0

�zz0 ln bzf ln bz0f

þ ð1=2Þ
X
n

X
n0

�nn0 ln xnf ln xn0f

þ ð1=2Þ��� ln ��if ln ��if þ
X
n

X
n

�mn ln ymf ln xnf

þ
X
n

X
m0

�zm ln bzf ln ymf þ
X
k

X
m

��m ln ��if ln ymf

þ
X
i

X
m

�im ln �hif ln ymf

þ
X
z

X
n

�zn ln bzf ln xnf

þ
X
k

X
n

��n ln ��if ln xif þ ln hð"f Þ ð5Þ

where ymf represent quantities of ‘goods’ m, bzf stand
for quantities of ‘bads’ z, xnf are quantities for the n
variable inputs, �� is the level of capital (treated as a
quasi-fixed input). External variables, introduced to
account for heterogeneity, appears in two different
ways in Equation 5. Some of them (rjf) act only as
external effects while others (�hif) act as production

5To get this result, Atkinson and Dorfman (2005) assume that the ‘bads’ can only be decreased and that, following Pittman
(1983), with constant ‘goods’ and technology, ‘bads’ can be reduced only by increasing one or more inputs.
6As mentioned by FKS (2002, p. 433), one could construct a single frontier defined as the maximal combinations of good
outputs, given quantities of bad outputs and inputs. Under a separability assumption, this approach essentially reduces to
treating the two types of outputs differently in the same aggregator and it does not allow for a natural separation of technical
and environmental efficiencies because a single frontier is generated. The implication is that a fully technically efficient farm is
also fully environmentally efficient.
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shifters (first-order polynomial and in interaction

with the outputs).7 Finally,

hð"f Þ ¼ expðvf � uf Þ ð6Þ

is an additive error with a symmetric noise compo-

nent, vf with zero mean and a half-normal distribu-

tion component uf.
The cost minimization condition is (Färe and

Primont, 1995)

wnxn
C
¼ �n þ ��n ln ��þ ð1=2Þ

X
n0

�nn0 ln xn0

þ
X
m

�mn ln ymþ
X
z

�zn ln bz þ �n ð7Þ

We assume that costs are being systematically

minimized and that the error terms �n have zero

mean. Symmetry requires that

�mm0 ¼ �m0m, 8m,m0, m 6¼ m0

�zz0 ¼ �z0z, 8z, z0, z 6¼ z0

�nn0 ¼ �n0n, 8n, n0, n 6¼ n0

�kk0 ¼ �k0k, 8k, k0, k 6¼ k0

ð8Þ

In addition, linear homogeneity in variables input

quantities impliesX
n

�n ¼ 1;
X
n

�nn0 ¼
X
n0

�nn0 ¼
X
n

X
n0

�nn0 ¼ 0;

X
n

�mn ¼ 0, 8m;
X
n

�zn ¼ 0, 8z and

X
n

�kn ¼ 0, 8k

The estimated distance system consists of n equa-

tions; the IDF in (5) is estimated subject to (6), and

n� 1 input shares first order conditions. Following

Kumbhakar and Tsionas (2005), we assume that v

and u are mutually independent and independent of

the explanatory variables. We also assume that

� � Nf ðn�1Þ 0f ðn�1Þ,
P
�If

� �
, where

P
is a (n� l)�

(n� l) covariance matrix, vf � Nð0, �2v Þ and

vf � Nþðz0F�, �
2
uÞ (i.e. u follows a half-normal distri-

bution). z represents a set of variables that conditions

differences in technical efficiency across farms and �
is a vector of corresponding coefficients.8

General performance measures

The above IDF specification is used to compute
several performance measures pertaining to TE,
productivity, profitability and EE.

Performance impacts of the farms’ and farmers’

characteristics. The farms’ and farmers’ character-
istics can be construed as fixed effects. The distance
function elasticities for these external factors are
given by

�"DI, rj ¼ �@ lnD
I=@rj and �"DI,�hj ¼ �@ lnD

I=@�hj

ð9Þ

Input compensation for increasing ‘goods’. The var-
iable input elasticity measures the input expansion
required to achieve a 1% increase in Ym.

�"DI,Ym
¼ �@ lnDI=@ lnYm ð10Þ

Output jointness or complementarily is measured
by "DIYm,Ym0

¼ @"DIYm
=@ lnYm0 ¼ 	mm0 : Output com-

plementarity implies "DIYm,Ym0
5 0, which means that

input use does not have to increase as much to
expand ym when the level of yn is higher.

Scale economies. The sum of first-order netput
elasticities defines the extent of scale economies. In
our multi-output context, our measure indicates how
much overall input use must increase to support a 1%
increase in all (good) outputs. Therefore, an elasticity
less than unity indicates increasing returns.

�"DI,Y ¼ �
X

m
@ lnDI=@ lnYm ð11Þ

This measure, developed by Baumol et al. (1982)
for a multiple-output technology, is similar to a cost
function’s elasticity of size.

Technical efficiency. Farm f ’s TE level is given by
TEf¼ exp(�ûf), where ûf is as in Jondrow et al. (1982)

ûf ¼ u�f þ ��

ðu�

f
=��Þ

�ðu�
f
=��Þ

" #
ð12Þ

7We follow Paul and Nehring (2005) with their external or shift factors. Fuentes et al. (2001) introduce the time trend in the
same way and interaction effects with the inputs. This approach is also close to the one applied by Rodriguez-Alvarez et al.
(2007) who treat some external factors as quasi-fixed inputs in their description of the production process.
8Outputs and inputs may be endogenous. Rodriguez-Alvarez and Lovell (2004), Atkinson et al. (2003) and Atkinson and
Dorfman (2005) use instrumental variables techniques to deal with this issue. In their application featuring electricity power
plants, Atkinson and Dorfman (2005) examine identification issues using Hansen’s (1982) J test in a Generalized Method of
Moments (GMM) framework. Because, Coelli and Perelman (2000) and Rodriguez-Alvarez et al. (2007) define the IDF as the
radial (proportional) expansion of all inputs (given the output level), the endogeneity problem does not arise if the random
disturbance affecting production processes changes all inputs in the same proportion (Roibas and Arias, 2004).

1662 L. D. Tamini et al.
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and u�f 	 DIðy,x, �̂Þ 
 �̂, �2� 	 �̂ 
 �
2
v , 
ð
Þ and �ð
Þ are

respectively the probability density function and the

cumulative distribution function of a standard

normal random variable.

BMPs adoption impact measures

Malmquist input-based productivity index. We are
interested in the comparison of performances of more

than two groups. In this instance, ‘circularity’ is a

crucial property for a bilateral productivity index.9

Pastor and Lovell (2005) show that the contempora-

neous Malmquist productivity index is not circular

and can give conflicting signals. Following Camanho

and Dyson (2006), we compute a Malmquist-based

performance index that satisfies the circularity prop-

erty and can be used for the comparison of more than

two groups. The index is computed as follows

MPB
adj ¼

QFB

f¼1 D
I
Bðy

B
f , x

B
f Þ

h i1=FB

QFP

f¼1 D
I
Pðy

P
f ,x

P
f Þ

h i1=Fp



YN
i¼1

QFi

f¼1 D
I
Pðy

i
f, x

i
fÞ

h i1=Fi

QFi

f¼1 D
I
Bðy

i
f, x

i
fÞ

h i1=Fi

2
64

3
75

1=N

ð13Þ

where parameter P represents the pooled dataset and

Fi the number of farms in each group i (i¼ l, . . . ,N ).

Let MFPB
adj be the product of ratios in the second

bracket and MEPB the first bracket. A value of MEPB

below one indicates that there is greater structural

efficiency in group B than in the pooled dataset P.10

A value of MFPB
adj below one indicates superior

productivity of the technological frontier of group B

compared to group P. And finally, a value of MPB
adj

below (above) unity indicates a superior (inferior)

productivity of group B compared to group P.

The profitability change. Using Althin et al.’s (1996)
Fisher-based index, the profitability change when

adopting a BMP is

F
$ 2
¼MEPB 


"BDI,YðXB,YBÞ

"P
DI,Y
ðXP,YPÞ

( )
ð14Þ

where "DI,Y is the primal input-based measure of
elasticity of scale defined in Equation 10. There is an
improvement when F

$

51.11 As in Althin et al. (1996),
our analysis of adoption’s impacts on productivity
and profitability entails estimating separate IDF for
each individual BMP.12

Environmental performances measures

Shadow price of the ‘bads’. The shadow price of the
‘bads’ is

@Cð½y,b�,pÞ

@b
¼�C ½y,b�,pÞrbD

I ½y,b�,xð½y,b�,pð Þ
� �

ð15Þ

We assume that the set of inputs x is a cost-
minimizing solution and that Cð½y, b�, pÞ is a function
of shadow prices. We then assume that the observed
price equals the shadow price for one input, herbi-
cides. By taking the ratio of the shadow price of
the ‘bads’ to the observed price of herbicide, the
Cð½y, b�, pÞ’s cancel out and we can solve for the
estimated shadow price of the ‘bads’.

pb ¼ �pherbicide
@DI ½y, b�, x ½y, b�, pð Þð Þ=@b

@DI ½y, b�, x ½y, b�, pð Þð Þ=@xH
ð16Þ

Environmental efficiency scores. We use
Reinhard et al. (1999) approach to derive a stochastic
measure of EE

lnEEzf¼ �
�1
zz

�

�zþ�zz lnbzf
þ
P
n
�zn lnxnf

þ
P
m
�zm lnymf

0
BB@

1
CCA

�

�zþ�zz lnbzf
þ
P
n
�zn lnxnf

þ
P
m
�zm lnymf

0
BB@

1
CCA

2

�2�zzuf

8>>><
>>>:

9>>>=
>>>;

0:5

2
6666666666664

3
7777777777775
ð17Þ

9 The circularity property posits that an index comparing productivity between units k and f, and between l and f, must be able
to compare productivity between units k and l via the arbitrary third unit, f. The outcome must be unaffected by the choice of
the third unit, f (Førsund, 2002).
10One could choose one group as the base, but in this case, the value of the index would depend on the technology chosen.
Examples include Berg et al. (1993) and Camanho and Dyson (2006). As mentioned by Førsund (2002), in a time series
context, this procedure is similar to the notions of inter temporal and accumulating technologies.
11 This measure suggested by Georgescu-Roegen (1951) is a simplified measure of profitability change because it omits mixed
terms (see Althin et al., 1996).
12We expect the adoption of a BMP to induce a structural change in the IDF. For example, manure injection implies a
modification – or a replacement – of machinery, an increase in the time used to spread the manure and then a possible
reallocation of the use of inputs. Using a Chow test (Greene, 2008), we test the hypothesis that the coefficient vectors are the
same for the subset of adopters and nonadopters. The size of our data set prevented us from doing estimation on sub-samples
of farmers adopting more than one BMP.
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where the predictor ûf is given by Equation 12.
A measure of EE is calculated using the positive root
in Equation 1713 and is used to compute the
environmental efficiency score (EES ) for each farm
as EESzf¼min(EEzf)/EEzf.

Environmental efficiency (EEJ). An alternative mea-
sure of firm f ’s EE level is computed using Jondrow
et al.’s (1982) formula (see (12)) from the IDF of the
‘bads’ with an aggregate ‘good ’ used as a technolog-
ical shifter. A strong positive correlation between
EES and EEJ would be indicative of robust results.

III. The Data

Our sample consists of 210 farms, most of them
involved in the production of two ‘goods’, crops (yC)
and animal productions (yA), both measured in
thousands of dollars. We have data on three ‘bads’,
measured as the emission levels (kilograms) of nitro-
gen (bN), phosphorous (bP) and sediments (bS).

14

Because, the correlation coefficients between the
‘bads’ are high,15 we considered only phosphorus
runoff in our empirical application. Variable inputs
are labor (xL), measured in hours, fertilizers (xF) and
herbicides (xH), both expressed in kg. Capital �� is
assumed to be quasi-fixed in the short run and is
proxied by the estimated value of owned and rented
machinery and other equipment.

There are four BMP variables that take a value of
one when the BMP is implemented and zero other-
wise. As mentioned before, some BMP variables act
as production shifters and they are: crop rotation
cycles (�hrotation), injection of liquid and semi-liquid
manure (�hmamre) in the soil within 24 hours of the
initial spreading and herbicide control and reduction
measures (�hherbamt). Crop rotation is considered to be
practiced if it covers over half of the cultivated land.
The establishment and maintenance of a riparian
buffer zone larger than 1m (rbuffer) is used as an
external effect. We hypothesize that having a certif-
icate for organic production (rorganic) and belonging
to an agro-environmental club (renvclub) also condition
the IDF.

Producers’ socio-economic attributes are used as
explanatory variables in the decomposition of effi-
ciency scores. The variable capturing whether the
residence of the primary producer is on the farm or
not (Resfarm) and gender (Gender) are modelled
through binary variables. Gender takes a value of one
when the primary producer is a woman. The level of
education (Education) takes the value of 1 when the
producer has a degree from a technical school, and/or
a community college and/or a university. The age of
the producer (Age) is introduced through a dummy
variable taking a value of zero if age555 and a value
of one if age455 years. Land use (Use) and farm size
(Size) are added to assess the impact of specializing in
cropping activities and farm size on efficiencies. The
variable Use equals 1 if the value of crops produced is
higher than the value of livestock and dairy produc-
tions and 0 otherwise. Finally, the level of annual
expenditure on telecommunication services (Telcom),
is used to capture a producer’s exposure to informa-
tion. Technical inefficiency is modelled as

uf ¼ �1Agef þ �2Genderf þ �3Educationf þ �4Usef

þ �5Sizef þ �6Resfarmf þ �7Telcomf ð18Þ

The summary statistics of the variables used in the
distance function analysis are presented in Table 1.

IV. Results

General results

The coefficient estimates of the distance function
system are displayed in Table 2. Many estimated
coefficients are significant and have the expected sign.
The model satisfies the curvature conditions, i.e. the
distance function is monotonically nondecreasing in
inputs and nonincreasing in ‘goods’ as well as quasi-
concave in variable inputs.16 The monotonicity
condition of the ‘bads’ is also met. The input cross-
effects coefficients are predominantly significant and
positive, indicating complementarities between fertil-
izers, herbicides and labour. The ‘goods’ cross-effect
coefficient is positive and significant, indicating sub-
stitution between the two outputs. That result suggests
that diversification at the farm level does not

13Reinhard et al. (1999) note that the EE measure adds independent information only if the outputs’ elasticities are variable,
a property of the translog IDF.
14 ‘Bads’ levels are computed through simulations that estimate the amount of chemical leached from individual Relatively
Homogeneous Hydrological Units (RHHUs). RHHUs correspond to small areas whose drainage structures are derived from a
relatively high resolution Digital Elevation Model (DEM).
15 The correlation coefficient between nitrogen runoff and phosphorus runoff was found to be 0.96. The correlation
coefficients of the sediment runoff with nitrogen runoff and phosphors runoff were 0.82 and 0.87, respectively.
16 Because we have imposed linear homogeneity, the input distance function must be quasi-concave.
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contribute significantly to overall economic perfor-

mance. The cross-effect coefficient of the two ‘goods’

and the ‘bads’ are nonsignificant, indicating that a

decrease in the bad does not impact on the increase in

inputs needed to increase a ‘good’ by 1%. Output mix,

including the ‘bads’ seems to be less fixed across farm

types than the input composition as in Paul and

Nehring (2005).17

Adopting a riparian buffer tends to have a positive

impact on the overall performance of the farm while

having an organic product certificate tends to have

a negative impact. The mean of the performance

impacts of the external variables that can interact with

the level of production (�h) is shown in Table 3. The

computed means of the overall impact of the three

variables are negative implying a reduction of the IDF.

Table 1. Summary statistics of variables used in the analysis

Mean SD Minimum Maximum

‘Goods’

Yield (�$1000) 103.09 325.41 0.15 2696.16
Animal production (�$1000) 6.55 22.16 0.00 260.00

‘Bads’

Nitrogen runoff (kilograms) 14.85 12.51 0.23 46.98
Phosphorus runoff (kilograms) 6.35 5.69 50.01 20.55
Sediment runoff (kilograms) 1.53 1.39 50.01 6.13

‘Variable inputs’

Labour
Quantity (hours) 27.56 91.59 0.03 730.10
Share in total cost (%) 72.38 25.13 1.04 99.98

Fertilizers
Quantity (kg/ha) 1.16 1.39 50.01 10.91
Share of in total cost (%) 21.06 19.87 50.01 77.33

Herbicides
Quantity (kg/ha) 0.56 0.68 50.01 4.99
Share in total cost (%) 6.56 6.90 50.01 48.28

‘Quasi-fixed inputs’

‘Quantity’ of capital (�$1000) 137.77 115.10 1.79 784.50

BMP/Environmental variables

(binary variables)

Production shifter

Crop rotation 0.70 0.46 0 1
Herbicide control 0.38 0.49 0 1
Manure control measures 0.41 0.49 0 1

Exogenous factors

Riparian buffer 0.56 0.50 0 1
Biological/organic certificate 0.03 0.18 0 1
Belonging to an environmental club 0.62 0.49 0 1

Farm and producer’s attributes
Age (years) 49.23 9.95 17 81
Gender (binary variable) 0.04 0.21 0 1
Education (order variable) 2.31 1.04 1 5
Residence on farm (binary variable) 0.88 0.32 0 1
Size of farm

Cultivated acres (�100 acres) 1.29 1.47 50.01 11.21
Animal production (�100 heads) 6.56 22.16 0.01 260

Crop production (binary variable) 1.24 1.41 50.01 11.21
Telecommunication expenditures (�$1000) 1.33 1.73 0.05 15

Total cost of production (�$1000) 73.67 239.93 0.23 2011.62

17 Just and Pope (1978) contend that the impact of input use on risk may induce a correlation between outputs that would
otherwise be independent without risk. The idea is that uncertainty causes variations in the marginal products or
contributions of inputs across products.
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The mean value of the predicted distance function
is 1.413 (see Table 4). We estimate the same distance

function without taking into account the ‘bads’ and

got a mean value of 1.430. The two mean values are

statistically different at the 5% level and this confirms

that the potential to increase production with a given

bundle of inputs decreases when farms are not

allowed to freely dispose of phosphorus emissions.

Technical efficiency

Table 2 also reports the parameters conditioning
the level of TE of individual farms. Education and
farm size have significant and positive impacts
on TE. Bigger farms and producers who hold a
degree from a technical school, college or university
are generally more efficient. The log-likelihood
is parameterized in terms of � ¼ �2u=ð�

2
v þ �

2
uÞ.

Table 2. Estimated coefficients of the input distance function

Parameters Estimate SE Parameters Estimate SE

�0 0.817 0.152 �herbicides�fertilizers �0.173 0.014
�ripbuf �0.024 0.035 �crop�labour 0.122 0.009
�Herbcont �0.028 50.001 �crop�fertilizers �0.097 0.007
�bioprod 0.482 0.112 �crop�herbicides �0.025 0.004
�envclub 0.025 0.035 �anima�labour �0.001 0.006
�liqman �0.054 0.098 �animal�fertilizers 0.001 0.005
�croprot 0.202 0.093 �animal�herbicides 0.001 0.002
�phosphorus �0.007 0.027 �crop�phosphorus 0.003 0.010
�crop �0.860 0.053 �animal�phosphorus �0.006 0.005
�animal �0.102 0.033 �crop�capital 0.026 0.020
�fertilizers 0.361 0.033 �animal�capital �0.010 0.010
�herbicides 0.192 0.012 �crop�croprot �0.078 0.029
�labour 0.447 0.041 �animal�croprot 0.011 0.023
�capital �0.033 0.049 �crop�liqman 0.007 0.023
�animal�animal �0.017 0.008 �animal�liqman �0.016 0.021
�animal�crop 0.074 0.019 �crop�contherb �0.034 50.001
�crop�crop �0.071 0.017 �animal�contherb 0.018 0.021
�phosphorus�phosphorus �0.012 0.007 �phosphorus�labour 0.009 0.009
�capital�capital �0.013 0.027 �phosphorus�fertilizers �0.007 0.007
�labour�labour �0.173 0.014 �phosphorusher�bicides �0.003 0.002
�fertilizers�fertilizers 0.027 0.009 �capital�labour �0.006 0.012
�herbicide�herbicide 0.146 0.010 �capital�fertilizers 0.006 0.009
�labour�fertilizers 0.146 0.010 �capital�herbicides 0.001 0.003
�labour�herbicide 0.027 0.009

Efficiency parameters
�Education �0.096 0.039 �use �0.018 0.078
�size �0.293 0.026 �gender 0.049 0.088
�age 0.014 0.044 �resfarm �0.022 0.053
�telecom 0.016 0.057

� 	 �2u �
2
v þ �

2
u

� ��1
0.583 0.117 �v 0.474 0.034

Mean log-likelihood 3.186 Number of observations 210

Table 3. Mean values of the overall impact of the external variables

Parameters Mean
Bootstrapped SE
of the mean

Normal based 95%
confidence interval
of the mean

Herbicide control �0.098 0.005 [�0.107; �0.089]
Manure injection �0.062 0.002 [�0.067; �0.058]
Rotation cycle

implementation
�0.015 0.010 [�0.034; �0.004]
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The significant estimate (i.e. 0.583) indicates
that, about half of the variation in the composite
error term is due to the noise component. The mean of
the predicted TE scores is 0.426.18 This is fairly low.19

Figure 1 plots the density distribution of predicted
technical efficiency within the dataset. Themean of the
predicted TE of farms primarily involved in animal
production is higher than the one for farms involved in
crop production (i.e. 0.466 and 0.428 are statistically

different at the 5% level of significance). The least
efficient farm has a TE score of 0.186 while the most
efficient farm has a TE score of 0.989.

Scale elasticities

The measure of scale elasticity is 0.644 which
reveals the presence of large economies of scale
(see Table 4). The scale elasticity has a value of 0.682
(0.625) when only farms predominantly involved in

crop (animal) productions are considered. The
difference is significant at the 5% level, but both
elasticities are close to the 0.65 obtained by Paul and
Nehring (2005) for the United States.

Individual output contributions embodied in the
overall scale elasticity are presented in Table 4. The

results show that more variable input are needed to
increase crop productions by 1% than to increase
animal productions by the same level. At �0.621, the
value of the shadow share of labour (i.e. labour
elasticity) is smaller than the observed mean share

(72.38%) indicating a low labour productivity.

The impact of beneficial management practices

The adoption of a BMP is likely to induce a structural

change in the IDF because some inputs are likely to

interact in different ways when a BMP is imple-

mented. We relied on a Chow test (Greene, 2008),

with a null hypothesis of equal coefficient vectors for

estimations done on subsamples of adopters and

nonadopters, to determine whether BMP adopters

actually use a different technology.20 We rejected the

null hypothesis of equal coefficients for herbicides

controls and manure injection BMPs as the p-values

for these BMPs, 0.001 and 0.000, fell well below the

critical 0.05, while the p-value in the case of crop

0
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Fig. 1. Predicted technical efficiency distribution

Table 4. Economic performance measures

Parameters Mean
Bootstrapped SE
of the mean

Normal based 95%
confidence interval
of the mean

Technical efficiency 0.437 0.008 [0.422; 0.452]
Distance function 1.413 0.018 [1.379; 1.448]
Shadow value of bad �0.063 0.001 [�0.064; �0.061]
‘input share’ of crop 0.618 0.014 [0.592; 0.645]
‘input share’ of animals 0.030 0.005 [0.020; 0.040]
Scale economies 0.644 0.014 [0.616; 0.671]
Labour elasticity �0.621 0.011 [�0.644; �0.599]
Fertilizer elasticity �0.291 0.010 [�0.311; �0.272]
Herbicide elasticity �0.087 0.002 [�0.092; �0.083]

18Without taking into account the ‘bads’ as a technological shifter in the production process, the mean value of the predicted
TE is 0.471. The null hypothesis of no significant difference between the means of TE with and without ‘bads’ is rejected at the
5% level.
19 Coelli et al. (2003) get a predicted mean TE of 0.86 from their sample of Indian dairy processing firms. Paul and Nehring’s
(2005) predicted mean TE is quite high at 0.93. Their IDF model was applied to US farm level data. FKS (2002) report a
median TE of 0.67 for their sample of US dairy farms. The median for our study is 0.49. Finally, Atkinson and Dorfman
(2005) report a weighted average TE of 0.55.
20 Estimations results are available from the authors upon request.
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rotation was 0.194. Accordingly, we restricted our

analyses to the first two aforementioned BMPs.
Figures 2–5 present the impacts of BMP adoption

on efficiency, productivity and profitability. In order

to make Figs 2–5 as intuitive as possible, we

computed the inverses of the Malmquist performance

index MPB
adj , its efficiency and productivity compo-

nents MFPB
adj and MEPB and the profitability index F

$

.

As a result, an index value greater (less) than one

represents an improvement (a deterioration).
Farms that have adopted herbicides control are

technically less efficient (0.93951), but enjoy a very

small productivity advantage (1.00841). The com-

bined effect is a decline in overall productive perfor-

mance (0.94751). However, the adoption of

herbicide control also tends to slightly increase

economies of scale, as indicated by the profitability

index (1.05441). Herbicide control probably frees up

capital and labour which can then be used to produce

more outputs. In contrast, farms that have adopted

manure injection tend to be more technically efficient
and more slightly productive than farms that have
not adopted this BMP. The net positive effect on the
overall Malmquist performance index is 1.14241.
Furthermore, profitability increases sharply when
manure injection is adopted (1.13641), indicating
an increase in returns to scale.

BMPs have positive environmental effects, as their
adoption reduces the bad without affecting the goods.
In the case of herbicide control, environmental gains
do not imply a reduction in productive performance.
Ambec and Lanoie (2008) and Horbach (2008)
suggest that private gains from the adoption of
environmentally-friendly technologies can be attrib-
uted to the fact that environmental management tools
provide incentives to develop cost saving practices.
These innovations induced by the adoption of
environmentally-friendly practices are at the heart
of the Porter-hypothesis (Porter and van der Linde,
1995).21 Piot-Lepetit and Le Moing (2007) found a
gain in productivity resulting from the relationship
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reference

21Horbach (2008, p. 172) concludes that ‘. . .An environmentally oriented research policy has not only to regard traditional
instruments like the improvement of technological capabilities of a firm, but also the coordination with soft environmental
policy instruments like the introduction of environmental management systems.’
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between efficiency and environmental regulation in
the analysis of pig production in France, unlike
Managi (2004) who did not find evidence in support
of the Porter-hypothesis when analysing the US
agricultural sector.

The ‘bads’

The shadow value of the ‘bads’. The estimated
shadow value of phosphorus runoff (i.e. marginal
abatement cost) has a mean value of 0.063 with an
SD of 0.001. It is 0.0652 for farms primarily involved
in animal productions, which is higher than the value
of 0.062 for farms involved in crop productions. The
difference between these two estimates is significant
at the 5% level. As in Ball et al. (2002) and Ghazalian
et al. (2010), reducing a ‘bad ’ output is costly.22 A
10% reduction in phosphorus induces a 0.628%
increase in the cost. In our sample, the average value
for the sub-cost function is $73 668, which implies
that the cost of a 10% runoff reduction would be
$461.24.23 The result also suggests that the marginal
abatement cost of runoff weakly increases with
the scale of production. The shadow value of the
bad is higher for farms primarily involved in animal
production than for farms specialized in crop
production.

Environmental efficiency measures. We computed
two sets of EE scores based on different methodol-
ogies. The mean of the computed EES is 0.486.
Figure 6 plots the density distribution of computed

EES within the dataset and Fig. 7 the density
distribution of the estimated EEJ. The mean of the
EES for farms specialized in animal productions is
lower than its crop productions counterpart: 0.380
versus 0.504. The difference is significant at the 5%
level. The Spearman rank correlation between EES
and EEJ is high at 0.71 indicating robustness of the
results.

Table 5 reports the Spearman rank correlation
between technical and environmental efficiencies. In
this table, the dataset is sub-divided into subsets
based on the predicted TEs. The correlation is
strongest for the most technically efficient farms
(75th percentile to the maximum TE ). There is no
statistically significant correlation between EE and
TE when only farms in the median-75th percentile
subsample are considered. Overall there is a tendency
for farms that are technically inefficient to also be
environmentally inefficient. A similar finding was
reported by Reinhard et al. (1999) and FKS (2002).24

Because of the low level of predicted TE, our findings
suggest that for many farms, pollution could be
reduced at no cost in terms of good output foregone.

V. Conclusion

The variability in farmers’ TE is likely to influence
observed environmental performance, as does the
adoption or nonadoption of BMPs. A distance
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Fig. 7. Predicted environmental efficiency (EEJ )
distribution
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Fig. 6. Predicted environmental efficiency score (EES )

distribution

22Our estimate is higher than Ball et al.’s (2002) 0.09% and 0.08% for leaching and runoff.
23Using data covering the 2001–2003 period, Gangbazo and Le Page (2005) find that phosphorus runoff has to decrease by
30.8% in the Chaudière watershed to reach the target of 0.030mg/l to prevent eutrophication at the water quality stations
(Table 4.2, p. 26). These authors also find that 33.8% of the phosphorus runoff is a nonpoint source pollution generated to a
large extent by agricultural activities (Table 4.3, p. 28). Clearly, discussing the cost of a 10% reduction is a sensible exercise.
24Reinhard et al. (1999) have found a positive Spearman rank correlation of 0.87 in their sample of Dutch dairy farms. A
similar finding is reported for US dairy farms by FKS (2002) even if the correlation coefficient is noticeably lower than 0.40.
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function approach is implemented to empirically
analyse technical and environmental efficiencies. In
the context of multiple good and bad outputs, two
types of input distance function are estimated. For
the first type, a bad output is modelled as a
technological shifter in an IDF for good outputs.
For the second type, good outputs are aggregated
into one good output which is used as a technological
shifter in an IDF for the bad output. The IDFs are
approximated by a flexible translog functional form
which is estimated using a full information maximum
likelihood method. We rely on a unique data set
covering 210 farms located in the Chaudière water-
shed, where water quality problems are acute. Data
on phosphorus, nitrogen and sediment loads have
been simulated through a hydrological model.

The computed level of TE is disaggregated across
farms. The level of education and the size of the farm
have a significant and positive impact on the TE. The
mean of the predicted TE suggests that less than half
of farm diversity is explained by the broad charac-
terization of input and output relationships in the
model. The mean of the computed environmental
efficiency scores is relatively low and a positive
correlation was found between scores of environmen-
tal and technical efficiencies. Our study also found
that reducing phosphorus run off entails cost at the
farm level.

The IDF of the good output is used to compute the
cumulative Malmquist-based productivity index and
we computed measures of efficiency and productivity
changes in response to the adoption of selected
BMPs. The Fisher productivity index was computed
and, by exploiting the duality between cost and input
distance functions, we obtained a measure of profit-
ability change when farms adopt selected BMPs. Our

results show significant differences across BMPs
regarding the direction and the magnitude of their
effect on profitability, efficiency and productivity.
Even if BMP implementation and bad output reduc-
tions are costly, profitability increases for one of the
implemented BMPs.
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Ministère du Développement durable, de
l’Environnement et des Parcs, Québec, Envirodoc
ENV/2005/0215, 40p.

Georgescu-Roegen, N. (1951) The aggregate linear produc-
tion function and its applications to von Neumann’s
economic model, in Activity Analysis of Production and
Allocation (Ed.) T. Koopmans, Wiley, New York,
pp. 98–115.

Ghazalian, P. L., Larue, B. and West, G. E. (2010) Best
management practices and the production of good
and bad outputs, Canadian Journal of Agricultural
Economics, 58, 283–302.

Greene, W. H. (2008) Econometrics Analysis, 6th edn,
Prentice-Hall, Inc., Upper Saddle River, NJ.

Hansen, L. P. (1982) Large sample properties of generalized
method of moments estimation, Econometrica, 50,
1029–54.

Horbach, J. (2008) Determinants of environmental innova-
tion – new evidence from German panel data sources,
Research Policy, 37, 163–73.

Huhtala, A. and Marklund, P.-O. (2005) Environmental
target and shadow prices of bad outputs in organic and
conventional farming, Contributed Paper, European
Association of Agricultural Economists, 11th
Congress, Copenhagen, Denmark.

Jondrow, J., Lowell, C. A.K.,Materov, I. S. and Schmidt, P.
(1982) On estimation of technical inefficiency in the
stochastic frontier of production function model,
Journal of Econometrics, 19, 233–8.

Just, R. E. and Pope, R. D. (1978) Stochastic specification
of production functions and economic implications,
Journal of Econometrics, 7, 67–86.

Kumbhakar, S. C. and Tsionas, E. G. (2005) Measuring
technical and allocative inefficiency in the translog cost
system: a Bayesian approach, Journal of Econometrics,
126, 355–84.

Managi, S. (2004) Competitiveness and environmental
policies for agriculture: testing the Porter hypothesis,
International Journal of Agricultural Resources,
Governance and Ecology, 3, 309–24.

Pastor, J. T. and Lovell, C. A. K. (2005) Circularity of the
Malmquist productivity index, Economic Theory, 33,
591–9.

Paul, C. J. M. and Nehring, R. (2005) Product diversifica-
tion, production systems, and economic performance
in US agricultural production, Journal of
Econometrics, 126, 525–48.

Piot-Lepetit, I. and Le Moing, M. (2007) Productivity and
environmental regulation: the effect of the nitrates
directive in the French pig sector, Environmental and
Resource Economics, 38, 433–46.

Pittman, R. (1983) Multilateral productivity comparisons
with undesirable outputs, The Economic Journal, 93,
883–91.

Porter, M. E. and van der Linde, C. (1995) Toward a new
conception of the environment competitiveness rela-
tionship, Journal of Economic Perspectives, 9, 97–118.

Reinhard, S., Lowell, C. A. K. and Thijssen, G. (1999)
Econometric estimation of technical and

Technical and environmental efficiencies 1671

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 L

av
al

] 
at

 1
4:

37
 1

7 
Fe

br
ua

ry
 2

01
2 



environmental efficiency: an application to Dutch
dairy farms, American Journal of Agricultural
Economics, 81, 44–60.

Reinhard, S. and Thijssen, G. (2000) Nitrogen efficiency of
Dutch dairy farms: a shadow cost system approach,
European Review of Agricultural Economics, 27,
167–86.

Rodriguez-Alvarez, A., del Rosal, I. and Banos-Pino, J.
(2007) The cost of strikes in the Spanish mining sector:
modeling an undesirable input with a distance func-
tion, Journal of Productivity Analysis, 27, 73–83.

Rodriguez-Alvarez, A. and Lovell, C. A. K. (2004) Excess
capacity and expense preference behavior in national
health systems: an application to the Spanish public
hospitals, Health Economics, 13, 157–69.

Roibas, D. and Arias, C. (2004) Endogeneity problems in
the estimation of multi-output technologies, Efficiency
Series Paper No. 6/2004, University of Oviedo.

Schmidt, P. and Lovell, C. A. K. (1979) Estimating
technical and allocative inefficiency relative to sto-
chastic production and cost frontiers, Journal of
Econometrics, 9, 343–66.

1672 L. D. Tamini et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 L

av
al

] 
at

 1
4:

37
 1

7 
Fe

br
ua

ry
 2

01
2 


